Kutatási készségek fejlesztése digitálisjáték-alapú tanulással tantárgyi tartalmon

Fő cikk tartalom

Bónus Lilla
Nagy Lászlóné

Absztrakt

Az oktatás egyik leginkább kutatott területe jelenleg a 21. századi készségek fejlesztése technológia-gazdag, kutatás-központú tanulási környezetben. Ennek oka az, hogy napjainkban olyan átfogó készségek fejlesztése vált hangsúlyossá a közoktatásban, mint például a problémamegoldás és a kritikai gondolkodás. Ezek olyan 21. századi készségek, amelyek fejlesztését célzó standardok leginkább a kutatás-központú megközelítéseket támogatják. A kutatás-központú tanulási környezetben a tanulók kutatási készégeiket alkalmazzák, amelyek szorosan kapcsolódnak a problémamegoldáshoz és a kritikai gondolkodáshoz egyaránt. A tudományos vizsgálódás és a problémamegoldás készségei közé tartoznak: a jelenségek, problémák elemzése, kérdések, hipotézisek megfogalmazása, megfigyelés, vizsgálat, kísérlet megtervezése és kivitelezése, változók azonosítása és kontrollja, módszerek kiválasztása, adatgyűjtés, adatok megjelenítése és elemzése, eredmények értékelése, értelmezése, kommunikálása és prezentálása, valamint következtetések megfogalmazása. Mindebből következik, hogy a kutatási készégek olyan 21. századi készségeknek tekinthetők, amelyek fejlesztése fontos feladata a közoktatásnak. Mindemellett új irányzat a játékelemek beemelése a kutatás-központú tanulási környezetbe a tanulási eredmények javítása céljából. Az oktatásban alkalmazott játékok iránti megnövekedett érdeklődés nyomán számos kutató bizonyította, hogy egy helyesen megválasztott és kivitelezett játék képes a tanulók tartalmi tudásának növelésére, kedvezően hat az attitűdre és motivációra, valamint képességfejlesztésre is alkalmazható. Az áttekintés első részében ismertetjük a kutatási készségeket, a kutatási készségek mérésének hazai igényét, valamint a kutatási készségek fejlesztésének néhány lehetőségét. A második részben kitérünk a digitális játék-alapú tanulás értelmezésére, a digitális játékok tervezésének elméletére. A harmadik részben a digitális játék-alapú tanulás és a kutatási készségek kapcsolatát mutatjuk be.

Cikk részletek

Hogyan kell idézni
Bónus, L., & Nagy, L. (2020). Kutatási készségek fejlesztése digitálisjáték-alapú tanulással tantárgyi tartalmon. Iskolakultúra, 30(8), 82-96. https://doi.org/10.14232/ISKKULT.2020.8.82
Folyóirat szám
Rovat
Tanulmány

Hivatkozások

Abd-El-Khalick, F. & Lederman, N. G. (2000). Improving science teachers’ conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701. DOI: 10.1080/09500690050044044
Adey, Ph. & Csapó Benő (2012). A természettudományos gondolkodás fejlesztése és értékelése. In Csapó Benő és Szabó Gábor (szerk.), Tartalmi keretek a természettudomány diagnosztikus értékeléséhez. Budapest: Nemzeti Tankönyvkiadó. 17–58.
Amory, A. & Seagram, R. (2003). Educational game models: conceptualization and evaluation. South African Journal of Higher Education, 17(2), 206–217. DOI: 10.4314/sajhe.v17i2.25314
Amory, A. (2001). Building an Educational Adventure Game: Theory, Design, and Lessons. Journal of Interactive Learning Research, 192(2−3), 249−264.
Banchi, H. & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.
Barab, S. A., Gresalfi, M. & Ingram-Goble, A. (2010). Transformational play: using games to position person, content, and context. Educational Researcher, 39(7), 525–536. DOI: 10.3102/0013189X10386593
Boyle, E., Connolly, T. M. & Hainey, T. (2011). The role of psychology in understanding the impact of computer games. Entertainment Computing, 2(2), 69−74. DOI: 10.1016/j.entcom.2010.12.002
Bybee, R. W. (2006). Scientific Inquiry and Science Teaching. In Lawrence, F. & Lederman, N. G. (szerk.), Scientific Inquiry and Nature of Science Implications for Teaching, Learning, and Teacher Education. Dordrecht: Springer. 1−15.
Byun, J. & Joung, E. (2018). Digital game-based learning for K-12 mathematics education: A meta-analysis. School Science and Mathematics, 118(3−4), 113–126. DOI:10.1111/ssm.12271
Clark, D. B. & Linn, M. C. (2013). The knowledge integration perspective: connections across research and education. In Vosniadou, S. (szerk.), International handbook of research on conceptual change. New York: Routledge. 520–538.
Csapó Benő, Csíkos Csaba & Korom Erzsébet (2016). Értékelés a kutatásalapú természettudomány-tanulásban: a SAILS projekt. Iskolakultúra, 26(3), 3−16. DOI: 10.17543/ISKKULT.2016.3.3
de Jong, T. (2011). Instruction Based on Computer Simulations. In Mayer, R. E. & Alexander, P. A. (szerk.), Handbook of Research on Learning and Instruction. London: Routledge. 446−466.
Dorji, U., Panjaburee, P. & Srisawasdi, N. (2015). A learning cycle approach to developing educational computer game for improving students’ learning and awareness in electric energy consumption and conservation. Educational Technology & Society, 18(1), 91–105. DOI: 10.1007/s10956-018-9754-0
Edelson, D. C., Gordin, D. N. & Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3−4), 391−450.
Elmas, R., Bodner, M. G., Aydogdu, B. & Saban, Y. (2018). The inclusion of science process skills in multiple-choice questions: Are we getting any better? European Journal of Science and Mathematics Education, 6(1), 13−23.
Fradd, S. H., Lee, O., Sutman, F. X. & Saxton, M. K. (2001). Promoting science literacy with English language learners through instructional materials development: A case study. Billingual Research Journal, 25(4), 479–501. DOI: 10.1080/15235882.2001.11074464
Hilfert-Rueppel, D., Looß, M., Klingenberg, K., Eghtessad, A., Höner, K., Müller, R., Strahl, A. & Pietzner, V. (2013). Scientific reasoning of prospective science teachers in designing a biological experiment. Lehrerbildung auf dem Prüfstand, 6(2), 135−154.
Hwang, G-J., Chiu, L. Y. & Chen, C-H. (2015). A contextual game-based learning approach to improving students' inquiry-based learning performance in social studies courses. Computer & Education, 81, 13−25. DOI: 10.1016/j.compedu.2014.09.006
Juul, J. (2003). The game, the player, the world: looking for a heart of gameness. In Level Up: Digital Games Research Conference Proceedings. Utrecht: Utrecht University, 30−45.
Kennedy-Clark, S., Galstaun, V. & Anderson, K. (2011). Death in Rome: Using an online game for inquiry-based learning in a pre-service teacher training course. In Baek, Y. & Whitton, N. (szerk.), Cases on Digital Game-Based Learning: Methods, Models, and Strategies. Hershey: IGI Global. 364−382.
Ketelhut, D., Nelson, B., Clarke, J. & Dede, C. (2010). A Multi-user virtual environment for building higher order inquiry skills in science. British Journal of Educational Technology, 41(1), 56−68. DOI: 10.1111/j.1467-8535.2009.01036.x
Khan, P. & O’Rourke, K. (2005). Understanding enquiry-based learning. In Barrett, T., Maclabhrainn, I. & Fallon, H. (szerk.), Handbook of enquiry and problem based learning. Galway: Centre for Excellence in Learning and Teaching. 1−12.
Koksal, E. A. & Berberoglu, G. (2014). The Effect of Guided-Inquiry Instruction on 6th Grade Turkish Students’ Achievement, Science Process Skills, and Attitudes Toward Science. International Journal of Science Education, 36(1), 66−78. DOI: 10.1080/09500693.2012.721942
Korom Erzsébet, Pásztor Attila, B. Németh Mária & Gyenes Tamás (2016). Kutatási készségek online mérése a 8–11. évfolyamon. Iskolakultúra, 26(3), 117−130. DOI: 10.17543/ISKKULT.2016.3.117
Lederman, G. N. (2019). Contextualizing the Relationship Between Nature of Scientific Knowledge and Scientific Inquiry. Science and Education, 28(7), DOI: 10.1007/s11191-019-00030-8
Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A. & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry, The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65−83. DOI: 10.1002/tea.21125
Lukáč, S. (2015). Stimulation of the development of inquiry skills in teaching functions. International Journal of Information and Communication Technologies in Education, 4(4), 4−18. DOI: 10.1515/ijicte-2015-0016
Mayer, J. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen. In Krüger, D. & Vogt, H. (szerk.), Theorien in der biologiedidaktischen Forschung. Berlin: Springer Verlag. 177−186.
Millis, K., Forsyth, C., Butler, H., Wallace, P., Graesser, A. & Halpern, D. (2011). Operation ARIES!: A Serious Game for Teaching Scientific Inquiry. In Ma, M., Oikonomou, A. & Lakhmi, J. (szerk.), Serious games and edutainment applications. London, UK: Springer-Verlag. 169−195. DOI: 10.1007/978-1-4471-2161-9_10
Mulder, G. Y., Lazonder, A. W. & de Jong, T. (2015). Simulation-Based Inquiry Learning and Computer Modeling: Pitfalls and Potentials. Simulations & Gaming, 46(3−4), 322−347. DOI: 10.1177/1046878115577159
Nagy Lászlóné & Nagy Márió Tibor (2016). Kutatásalapú tanítás-tanulás a biológiaoktatásban és a biológiatanár-képzésben. Iskolakultúra, 26(3), 57−69. DOI: 10.17543/ISKKULT.2016.3.57
Nagy Lászlóné (2010). A kutatásalapú tanulás/tanítás (’inquiry-based learning/teaching’, IBL) és a természettudományok tanítása. Iskolakultúra, 20(12), 31−51.
Nagy Lászlóné, Korom Erzsébet, Pásztor Attila, Veres Gábor & B. Németh Mária (2015). A természettudományos gondolkodás online diagnosztikus értékelése. In Csapó Benő, Korom Erzsébet & Molnár Gyöngyvér (szerk.), A természettudományi tudás online diagnosztikus értékelésének tartalmi keretei. Budapest: Oktatáskutató és Fejlesztő Intézet. 87−113.
National Research Council (NRC) (1996). National Science Education Standards. Washington, DC: National Academy Press. DOI: 10.17226/4962
National Research Council (NRC) (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. Washington, D.C: National Academy Press. DOI: 10.17226/9596
NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press. DOI: 10.17226/18290
OECD (2019). PISA 2018 Assessment and Analytical Framework, PISA, Paris: OECD Publishing. DOI: 10.1787/b25efab8-en
Osborne, J. & Collins, S. (2001). Pupils’ views of the role and value of the science curriculum: a focus-group study. International Journal of Science Education, 23(5), 441–467. DOI: 10.1080/09500690010006518
Overton, W. F. (1990). Reasoning, necessity, and logic: Developmental perspectives. New York: Psychology Press. DOI: 10.4324/9780203771198
Pedaste, M. & Sarapuu, T. (2006). Developing an effective support system for inquiry learning in a Web-based environment. Journal of Computer Assisted Learning, 22(1), 47–62. DOI: 10.1111/j.1365-2729.2006.00159.x
Plass, J. L., O’Keefe, P. A., Homer, B. D., Case, J., Hayward, E. O., Stein, M. & Perlin, K. (2013). The impact of individual, competitive, and collaborative mathematics game play on learning, performance, and motivation. Journal of Educational Psychology, 105(4), 1050–1066. DOI: 10.1037/a0032688
Prensky, M. (2001). Fun, Play and Games: What Makes Games Engaging. New York: McGraw-Hill.
Reid, N. & Yang, M. J. (2002). The solving of problems in chemistry: The more open-ended problems. Research in Science & Technological Education, 20(1), 83−98. DOI: 10.1080/02635140220130948
Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg- Henriksson, H. & Hemmo, V. (2010). Természettudományos nevelés ma: megújult pedagógia Európa jövőjéért. Iskolakultúra, 20(12), 13−30.
Rowe, J. P., Shores, L. R., Mott, B. W. & Lester, J. C. (2011). Integrating Learning, Problem Solving, and Engagement in Narrative-Centered Learning Environments. International Journal of Artificial Intelligence in Education, 21, 115−133. DOI: 10.3233/JAI-2011-019
Sabourin, J. (2014). Affect and Engagement in Game-Based Learning Environments. IEEE Transactions on Affective Computing, 5(1), 45−56. DOI: 10.1109/T-AFFC.2013.27
Sen, S. & Oskay, O. O. (2016). The Effects of 5E Inquiry Learning Activities on Achievement and Attitude toward Chemistry. Journal of Education and Learning, 6(1), 1−10. DOI: 10.5539/jel.v6n1p1
Srisawasdi, N. & Panjaburee, P. (2018). Implementation of Game-transformed Inquiry-based Learning to Promote the Understanding of and Motivation to Learn Chemistry. Journal of Science Education and Technology, 28(2), 152−164. DOI: 10.1007/s10956-018-9754-0
Srisawasdi, N. (2018). Transforming Chemistry Class with Technology-Enhanced Active Inquiry Learning for the Digital Native Generation. In Cox, C. & Schatzberg, W. E. (szerk.), International Perspectives on Chemistry Education Research and Practice. Washington, DC: American Chemical Society. 221−233. DOI: 10.1021/bk-2018-1293.ch014
Stewart, J., Bleumers, L., Van Looy, J., Marien, I., All, A., Schurmans, D., Willaert, K., De Grove, F., Jacobs, A. & Misuraca, G. (2013). The Potential of Digital Games for Empowerment and Social Inclusion of Groups at Risk of Social and Economic Exclusion: Evidence and Opportunity for Policy. Luxemburg: Publication Office of the European Union. DOI: 10.2791/88148
Tan, P. H., Ling, S. W. & Ting, C. Y. (2007). Adaptive digital game based learning framework. In Proceedings of the 2nd International Conference on Digital Interactive Multimedia in Entertainment and Arts. New York: Association for Computing. 142−146.
Ulus, B. & Oner, D. (2020). Fostering Middle School Students’ Knowledge Integration Using the Web-Based Inquiry Science Environment (WISE). Journal of Science Education and Technology. DOI: 10.1007/s10956-019-09809-4
Van Eck, R. (2006). Digital Game Based LEARNING It's Not Just the Digital Natives Who Are Restless. EDUCAUSE Review, 41(2), 16−30.
Wenning, C. J. (2007). Assessing inquiry skills as a component of scientific literacy. Journal of Physics Teacher Education Online, 4(2), 21–24.
Whitton, N. (2012). The place of game-based learning in age of austerity. Electronic Journal of e-Learning, 10(2), 249−256.
Wu, H-K. & Hsieh, C-E. (2006). Developing Sixth Graders’ Inquiry Skills to Construct Explanations in Inquiry-based Learning Environment. International Journal of Science Education, 28(11), 1289−1313. DOI: 10.1080/09500690600621035
Z. Orosz Gábor, B. Németh Mária & Korom Erzsébet (2018). A kutatási készségek vizsgálata középiskolások és egyetemisták körében. In Fehérvári Anikó, Széll Krisztián & Misley Helga (szerk.), Kutatási sokszínűség, oktatási gyakorlat és együttműködések: Absztrakt kötet: XVIII. Országos Neveléstudományi Konferencia. Budapest: ELTE Pedagógiai és Pszichológiai Kar, MTA Pedagógiai Tudományos Bizottság. 462.
Zhou, S., Han, J., Koenig, K., Raplinger, A., Pi, Y., Li, D., Xiao, H., Fu, Z. & Bao, L. (2016). Assessment of scientific reasoning: The effects of task context, data, and design on student reasoning in control of variables. Thinking Skills and Creativity, 19, 175–187. DOI: 10.1016/j.tsc.2015.11.004
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27, 172–223. DOI: 10.1016/j.dr.2006.12.001
Zion, M. & Mendelovici, R. (2012). Moving from structured to open inquiry: Challenges and limits. Science Education International, 23(4), 383−399.